THE CLASS OF BCC-ALGEBRAS IS NOT A VARIETY

Yuichi Komori*

(Received February 3, 1983)

Abstract. Kiyoshi Iséki posed an interesting problem whether the class of BCK-algebras is a variety. In connection with the problem, the author introduced a notion of BCC-algebras. In this note, we shall show that the class of BCC-algebras is not a variety. The result in this note was lectured on by Hiroakira Ono at Jagiellonian University in Poland in June 1981. A. Wroński [4], who began to study the problem since Ono's lecture, proved that the class of BCK-algebras is not a variety. (For the definitions and notations undefined here, see the reference [2].)

A *BCC-algebra* is an algebra $A = \langle A; \longrightarrow, 1 \rangle$ of type $\langle 2, 0 \rangle$ such that for every $x, y, z \in A$ the following conditions are satisfied:

$$(1) \quad (y \to z) \to ((x \to y) \to (x \to z)) = 1,$$

(2)
$$x \rightarrow x = 1$$
, (2) follows from the

(3)
$$x \rightarrow 1 = 1$$
, others.

$$1 \longrightarrow x = x.$$

(5) if
$$x \rightarrow y = 1$$
 and $y \rightarrow x = 1$, then $x = y$.

We have the axiom system of *BCK*-algebras (but dual form), if we exchange (1) for $(x \to y) \to ((y \to z) \to (x \to z)) = 1$.

Let F be the set of all terms, generated by two variables x and y, in the BCC-language.

Definition 1. We define the set X, Y and 1 by the following inductive definition such that $\{X, Y, 1\}$ is a partition of F:

- (1) $x \in X$, $y \in Y$ and $1 \in I$,
- (2) if $s \in X$ or $s \in Y$, then $s \rightarrow t \in 1$,
- (3) if $s \in 1$, then $s \to t$ belongs to the set which t belongs to.

AMS (MOS) subject classifications (1980). 03G25, 08B99.

^{*} Department of Mathematics, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422, Japan.

Lemma 2. If a class K of BCC-algebras is a variety, then there exist $s \in X$ and $t \in Y$ such that $s = t \in Id(K)$.

Lemma 3. The rightmost variable of any term in X (or Y) is x (or y, respectively).

We now define Gentzen-type system LC. LC is a Gentzen's LJ-type system. In the following, Γ , Δ , Σ denote finite (possibly empty) sequences of terms separated by commas. Θ denotes a sequence which consists of at most one term. The followings are axioms and rules of inference of LC.

Axioms:

$$\alpha \Rightarrow \alpha$$
 (for any variable α),
 $\Rightarrow 1$.

Reles of Inference:

$$\operatorname{cut} : \frac{\Gamma \Rightarrow t \quad \Sigma, \ t, \ \Delta \Rightarrow \Theta}{\Sigma, \ \Gamma, \ \Delta \Rightarrow \Theta}$$

$$\Rightarrow \to : \frac{s, \ \Gamma \Rightarrow t}{\Gamma \Rightarrow s \to t} \qquad \to \Rightarrow : \frac{\Gamma \Rightarrow s \quad \Sigma, \ t, \ \Delta \Rightarrow \Theta}{\Sigma, \ \Gamma, \ s \to t, \ \Delta \Rightarrow \Theta}$$

$$T \Rightarrow : \frac{\Gamma, \ \Delta \Rightarrow \Theta}{\Gamma, \ t, \ \Delta \Rightarrow \Theta} \qquad \Rightarrow T : \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow t}.$$

Remark. For any term t, $t \Rightarrow t$ is provable in LC.

By the induction on the length of proof, we can prove that $s \rightarrow t = 1$ is satisfied in all *BCC*-algebras if $s \Rightarrow t$ is provable in *LC*. Conversely, we can show that $s \Rightarrow t$ is provable in *LC* if $s \rightarrow t = 1$ is satisfied in all *BCC*-algebras, by using the Lindenbaum algebra of *LC*. Hence, by the condition (5), we have

Theorem 4. For any s and t, s = t is satisfied in all BCC-algebras if and only if both $s \Rightarrow t$ and $t \Rightarrow s$ are provable in LC.

Remark. Let LKK is a Gentzen-type system obtained form LC by adding to it the following rule of inference:

$$I \Rightarrow : \frac{\Gamma, s, t, \Delta \Rightarrow \Theta}{\Gamma, t, s, \Delta \Rightarrow \Theta}$$
.

We can also show that s = t is satisfied in all BCK-algebras if and only if both $s \Rightarrow t$

and $t \Rightarrow s$ are provable in LKK.

Similarly to Gentzen [1], we can prove the cut elimination theorem.

Theorem 5. (Cut Elimination Theorem). If $\Gamma \Rightarrow \Theta$ is provable in LC (or LKK), then it is provable without a cut in LC (or LKK, respectively).

Corollary 6. Both the word problems for free BCC-algebra and for free BCK-algebra are solvable.

Lemma 7. If Γ , $s \Rightarrow t$ is provable in LC, then either the rightmost variable of s is the same as that of t or $\Gamma \Rightarrow t$ is provable in LC.

Proof. We prove this by the induction on the length of the cut free proof of Γ , $s \Rightarrow t$. When the length is 1 (that is, the proof consists of only an axiom sequent), obviously this lemma holds.

We consider the case that $\rightarrow \Rightarrow$ is the last rule of inference.

$$\longrightarrow \Rightarrow : \frac{\Gamma \Rightarrow s_1 \qquad \Sigma, \ s_2, \ \Delta \Rightarrow t}{\Sigma, \ \Gamma, \ s_1 \longrightarrow s_2, \ \Delta \Rightarrow t} \ .$$

If Δ is an empty sequence, then s equals $s_1 \longrightarrow s_2$. By the inductive hypothesis, either the rightmost variable of s_2 is the same as that of t or $F \Rightarrow t$ is provable in LC. In the former case, the rightmost variable of s is the same as that of t. In the latter case, Σ , $\Gamma \Rightarrow t$ is provable in LC.

Suppose that Δ is not empty. We can denote Δ by Δ_1 , s. By the inductive hypothesis, either the rightmost variable of s is the same as that of t or Σ , s_2 , $\Delta_1 \Rightarrow t$ is provable in LC. In the former case, of course, the rightmost variable of s is the same as that of t. In the latter case, Σ , Γ , $s_1 \longrightarrow s_2$, $\Delta_1 \Rightarrow t$ is provable in LC.

In the case that another is the last rule, the proof is similar. Q. E. D.

Lemma 8. If an identity s = t is satisfied in all BCC-algebras and $s \in X$, then the rightmost variable of s is the same as that of t.

Proof. By Theorem 4, $t \Rightarrow s$ is provable in LC. By Lemma 7, either the rightmost variable of s is the same as that of t or $\Rightarrow s$ is provable in LC. Suppose that $\Rightarrow s$ is provable in LC. Then both $1 \Rightarrow s$ and $s \Rightarrow 1$ are provable in LC. Therefore, s = 1 is satisfied in all BCC-algebras. But s = 1 is not satisfied in the simple BCC-algebra which has two elements. So $\Rightarrow s$ is not provable in LC. Q. E. D.

By Lemma 2, Lemma 3 and Lemma 8, we have

Theorem 9. The class of all BCC-agebras is not a variety.

References

- [1] G. Gentzen: Untersuchungen über das logische Schliessen. Math. Z., 39 (1935), 176-210, 405-431. Translated in [3].
- [2] G. Grätzer: Universal algebra (second edition). Springer-Verlag New York Inc., 1979.
- [3] M. E. Szabo: ed., The collected paper of Gerhard Gentzen. North-Holland, Amsterdam, London, 1969.
- [4] A. Wroński: BCK-algebras do not form a variety, Math. Japon., 28 (1983), 211-213.