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THE NUMBER O F  PROOFS FOR A BCK-FORMULA 

In this note, we give a necessary and sufficient condition for a BCK-formula 
to have the unique normal form proof. 

We call implicational propositional formulas formulas for short. BCK-formulas 
are the formulas which are derivable from axioms B = (a + b)+ (c+ a)+ c + b, 
C = [a +b +C) +b + a  +c, and K = a +b +a by substitution and modus ponens. 
It is known that the property of being a BCK-formula is decidable (Jaskowski [ l l ,  
Theorem 6.51, Ben-Yelles [3, Chapter 3, Theorem 3.221, Komori [12, CorolJary61).  
The set of BCK-formulas is identical to the set of provable formulas in the natural 
deduction system with the following two inference rules. 

Here y occurs at most once in (+I ) .  By the formulae-as-types correspondence 
[ l o ] , this set is identical to the set of type-schemes of closed BCK-i-terms. (See 
[5] . )A BCK-A-term is a A-term in which no variable occurs twice. Basic notions 
concerning the type assignment system can be found [ 4 ] . Uniqueness of normal 
form proofs has been known for balanced formulas. (See [2,14].)It is related to 
the coherence theorem in cartesian closed categories. A formula is balanced when 
no variable occurs more than twice in it. It was shown in [8]  that the proofs of 
balanced formulas are BCK-proofs. Relevantly balanced formulas were defined 
in [9] ,  and it was proved that such formulas have unique normal form proofs. 
Balanced formulas are included in the set of relevantly balanced formulas. We 
show a necessary and sufficient condition for a BCK-formula to have a unique 
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normal form proof using the following notion of minimality. The notion of BCK-
minimality was introduced by Komori [13]. A formula r is called a trivial substitu-
tion instance of b iff a is a substitution instance of b and ,B is a substitution instance 
of r. 

DEFINITION1. A formula is BCK-minimal iff it is a BCK-formula and it is not 
a nontrivial substitution instance of another BCK-formula. A BCK-formula b is a 
minimal formula of r iff b is BCK-minimal and r is a substitution instance of @. 

It is clear that a BCK-minimal formula is a principal type-scheme of a closed 
BCK-).-term. 

We identify two ).-terms when they are a-convertible. Similarly, two types are 
identified when one is a trivial substitution instance of the other. 

LEMMA1 ([7]). If two closed BCK-),-terms in B-normal form have the same 
principal type, then they are identical. 

LEMMA2 ([8]). A BCK-formula is BCK-minimal iff it is a principal type-scheme 
of a closed BCK-).-term in by-normal form. 

THEOREM1. Given a BCK-formula r,  the number of closed BCK-).-terms in Bq-
normal form which has type r is identical to the number of minimal formulas of a. 

PROOF.Let r be a BCK-formula. We denote by proof(%)the set of closed BCK-
i-terms in Bq-normal form which have type a and we denote by min(a) the set of 
minimal formulas of a. We define a function from proof(%)to min(a) and show 
that it is surjective and injective. Let M E  proof(%).Then M has type r .  By the 
principal type-scheme theorem (Theorem 15.26 of [4]), M has a principal type-
scheme. We denote it by pts(M). Since M is in Bq-normal form, pts(M) is minimal 
by Lemma 2. So we have pts(M) E min(a). Thus pts is a function from proof(a) to 
min(r). Injectivity of pts is immediate from Lemma 1. To prove the surjectivity, 
let @ E min(a) and apply Lemma 2 to 8. Then there is a closed BCK-i-term N in 
Bq-normal form whose principal type-scheme is @. Therefore pts is surjective. 

One consequence of the theorem is that a BCK-formula a has only a finite num-
ber of normal form proofs. In fact, we can enumerate all the minimal formulas 
instead of i-terms. Given a formula y, we denote by sob) the set of formulas b 
such that 7 is a substitution instance of 8. Since we identify trivial substitution 
instances, the set so(?)is finite. Next we denote by s(7) the set of BCK-formulas in 
so(?).Since BCK-provability is decidable, we can enumerate the elements of s(7) 
from so(?).Finally note that ,8 is BCK-minimal iff s(b) = (B). Therefore we have 

min(r) = {B E sO(a)/ s(B) = {b)) .  

Thus we can enumerate all the elements of min(a). 
Akama [I] showed that the number of cut-free proof (in sequent calculus) for a 

BCK-formula is finite. 
COROLLARY1. A BCK-formula has a unique proof in Bq-normal form ~f fit has 

a unique minimal formula. 
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