The Variety Generated by BCC-Algebras Is Finitely Based

Yuichi Komori

Department of Mathematics, Faculty of Science, Shizuoka University

(Received Oct. 12, 1982)

Dedicated to Professor Kentaro Murata on his 60th birthday

In [2], we have proved that the class of all BCC-algebras is not a variety. In this note, developing the method in [2], we shall show that *the variety generated by BCC-algebras*, that is, the smallest variety containing the class of all BCC-algebras, is finitely based. (For the definitions and notations undefined here, see the reference [1].)

A BCC-algebra is an algebra $A = \langle A; \rightarrow, 1 \rangle$ of type $\langle 2,0 \rangle$ such that for every $x, y, z \in A$ the following conditions are satisfied:

- $(1) \quad (y \to z) \to (x \to y) \to x \to z = 1,$
- $(2) x \to x = 1,$
- $(3) x \to 1 = 1,$
- $(4) 1 \rightarrow x = x,$
- (5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$, then x = y.

We have the axiom system of BCK-algebras (but dual form), if we exchange (1) for $(x \rightarrow y) \rightarrow (y \rightarrow z) \rightarrow x \rightarrow z = 1$. We adopt the convention requiring terms with lacking parenthesis to be associated to the right.

We define *Gentzen-type system* **LC**. (This system is slightly defferent from the system in [2]. But, of course, thay are mutually equivalent.) In the following, Γ , Δ , Σ denote finite (possibly empty) sequences of terms separated by commas. The followings are axioms and rules of inference of **LC**.

Axioms:

$$\Gamma$$
, α , $\Delta \Rightarrow \alpha$ (for any variable α), $\Gamma \Rightarrow 1$.

Rules of inference:

cut :
$$\frac{\Gamma \Rightarrow t \qquad \Sigma, t, \Delta \Rightarrow s}{\Sigma, \Gamma, \Delta \Rightarrow s}$$

$$\Rightarrow \rightarrow \quad : \quad \frac{\Gamma, s \Rightarrow t}{\Gamma \Rightarrow s \rightarrow t} \qquad \rightarrow \Rightarrow \quad : \quad \frac{\Gamma \Rightarrow s}{\Sigma, s \rightarrow t, \Gamma, \Delta \Rightarrow u}$$

We write $\Gamma \vdash t$ if the sequent $\Gamma \Rightarrow t$ is provable in **LC**. We write $\Gamma \not\vdash t$ if the sequent $\Gamma \Rightarrow t$ is not provable in **LC**. If $s \vdash t$ and $t \vdash s$, then we write $s \Leftrightarrow t$.

Theorem 1 ([2]). For any terms s and t;

- (i) $\mid t \mid \text{if and only if } t = 1 \text{ is satisfied in all BCC-algebras},$
- (ii) $s \Leftrightarrow t$ if and only if s = t is satisfied in all BCC-algebras.

Theorem 2 (Cut Elimination Theorem [2]). If $\Gamma \Rightarrow t$ is provable in LC, then it is provable without a cut in LC.

The following lemma is useful and fundamental.

Lemma 3 (Fundamental Lemma). Let Γ be a finite sequence of variables and α be a variable. If Γ , $s \to t$, $\Delta \vdash \alpha$ and Γ , $\Delta \not\vdash \alpha$, then there exist sequences Δ_1 and Δ_2 such that $\Delta_1 \vdash s$, Γ , t, $\Delta_2 \vdash \alpha$ and $\Delta = \Delta_1$, Δ_2 .

Proof. We prove this lemma by induction on the length of cut-free LC-proof of Γ , $s \to t$, $\Delta \Rightarrow \alpha$. By Γ , $\Delta \not\models \alpha$, Γ , $s \to t$, $\Delta \Rightarrow \alpha$ is not an axiom.

Case 1. The principal term of the last inference is $s \to t$, that is, the last inference is

$$\frac{\Delta_1 \Rightarrow s \qquad \Gamma, t, \Delta_2 \Rightarrow \alpha}{\Gamma, s \rightarrow t, \Delta_1, \Delta_2 \Rightarrow \alpha} \qquad (\Delta = \Delta_1, \Delta_2)$$

In this case, this lemma obviously holds.

Case 2. The principal term of the last inference is contained in Δ , that is, the last inference is

$$\frac{\Sigma_1 \Rightarrow u \qquad \Gamma, s \to t, \Sigma_2, v, \Sigma_3 \Rightarrow \alpha}{\Gamma, s \to t, \Sigma_2, u \to v, \Sigma_1, \Sigma_3 \Rightarrow \alpha} \qquad (\Delta = \Sigma_2, u \to v, \Sigma_1, \Sigma_3)$$

By Γ , $\Delta \not\models \alpha$, Γ , Σ_2 , v, $\Sigma_3 \not\models \alpha$. By induction hypothesis, there exist sequences Π_1 and Π_2 such that $\Pi_1 \vdash s$, Γ , t, $\Pi_2 \vdash \alpha$ and Σ_2 , v, $\Sigma_3 = \Pi_1$, Π_2 . Suppose that v is contained in Π_1 . Then, there exists a sequence Λ such that $\Pi_1 = \Sigma_2$, v, Λ . By $\Sigma_1 \vdash u$ and Σ_2 , v, $\Lambda \vdash s$, Σ_2 , $u \to v$, Σ_1 , $\Lambda \vdash s$. Therefore, we have that $\Delta_1 \vdash s$, Γ , t, $\Delta_2 \vdash \alpha$ and $\Delta = \Delta_1$, Δ_2 if we put $\Delta_1 = \Sigma_2$, $u \to v$, Σ_1 , Λ and $\Delta_2 = \Pi_2$. Suppose that v is contained in Π_2 . Then, there exists a sequence Λ such that $\Pi_2 = \Lambda$, v, Σ_3 . By $\Sigma_1 \vdash u$ and Γ , t, Λ , v, $\Sigma_3 \vdash \alpha$, Γ , t, Λ , $u \to v$, Σ_1 , $\Sigma_3 \vdash \alpha$. It completes the proof that we put $\Delta_1 = \Pi_1$ and $\Delta_2 = \Lambda$, $u \to v$, Σ_1 , Σ_3 .

We regard t_m , t_{m+1} ,, t_n as the empty sequence if n < m.

Lemma 4. If $t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_n \rightarrow \alpha$, t_k , t_{k+1} , \cdots , $t_n \vdash \alpha$ and t_k , t_{k+1} , \cdots , $t_n \not\vdash \alpha$ ($1 \leq k \leq n+1$ and α is a variable), then $\vdash t_l$ for any l such that $1 \leq l \leq k-1$.

Proof. If k=1, then this lemma holds obviously because there does not exist l such that $1 \le l \le k-1$. Suppose that $2 \le k \le n+1$. We prove this lemma by induction on n. By Lemma 3, there exists a natural number m $(k-1 \le m \le n)$ such that t_k , t_{k+1} , \cdots , $t_m \vdash t_1$ and $t_2 \to \cdots \to t_n \to \alpha$, t_{m+1} , t_{m+2} , \cdots , $t_n \vdash \alpha$. By t_k , t_{k+1} , \cdots , $t_n \not\vdash \alpha$, we have t_{m+1} , t_{m+2} , \cdots , $t_n \not\vdash \alpha$. By induction hypothesis, $\vdash t_i$ for any i $(2 \le i \le m)$. By t_k , t_{k+1} , \cdots , $t_m \vdash t_1$ $(k \ge 2)$ and $\vdash t_i$ for any i $(2 \le i \le m)$, we have $\vdash t_1$. Hence, $\vdash t_l$ for any l $(1 \le l \le k-1)$.

Lemma 5. If $s \to t \Leftrightarrow u \to v$, then at least one of the following four conditions holds; (A) $s \Leftrightarrow u$ and $t \Leftrightarrow v$, (B) $\vdash s$ and $t \Leftrightarrow u \to v$, (C) $\vdash u$ and $s \to t \Leftrightarrow u$, (D) $\vdash s \to t$ and $\vdash u \to v$.

Proof. Let t and v be $t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_m \rightarrow \alpha$ and $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow \beta$ $(m,n \geq 0)$ and α and β are variables), respectively. By $s \rightarrow t \vdash u \rightarrow v$, $s \rightarrow t$, u, v_1 , v_2 , \cdots , $v_n \vdash \beta$. If u, v_1 , v_2 , \cdots , $v_n \vdash \beta$, then (D) holds. Suppose u, v_1 , v_2 , \cdots , $v_n \not\vdash \beta$. By Lemma 3, either $\vdash s$ and t, v_1 , v_2 , \cdots , $v_n \vdash \beta$, or there exists l $(0 \leq l \leq n)$ such that u, v_1 , v_2 , \cdots , $v_l \vdash s$ and t, v_{l+1} , v_{l+2} , \cdots , $v_n \vdash \beta$. In the former case, (B) holds. Consider the latter case. By $u \rightarrow v \vdash s \rightarrow t$, $u \rightarrow v$, s, t_1 , t_2 , \cdots , $t_m \vdash \alpha$. We can suppose s, t_1 , t_2 , \cdots , $t_m \not\vdash \alpha$ because otherwise (D) holds. By Lemma 3, either $\vdash u$ and v, s, t_1 , t_2 , \cdots , $t_m \vdash \alpha$, or there exists k $(0 \leq k \leq m)$ such that s, t_1 , t_2 , \cdots , $t_k \vdash u$ and v, t_{k+1} , t_{k+2} , \cdots , $t_m \vdash \alpha$. If $\vdash u$, then (C) holds. By t, v_{l+1} , v_{l+2} , \cdots , $v_n \vdash \beta$, $t_{k+1} \rightarrow t_{k+2} \rightarrow \cdots \rightarrow t_m \rightarrow \alpha$, v_{l+1} , v_{l+2} , \cdots , $v_n \vdash \beta$. Hence, by v, t_{k+1} , t_{k+2} , \cdots , $t_m \vdash \alpha$, v, v_{l+1} , v_{l+2} , \cdots , $v_n \vdash \beta$. Therefore, by Lemma t, t, t, t, t. We have proved that (A) holds.

Q. E. D.

The degree of a term t (denoted by deg (t)) is the number of occurrences of the symbol \rightarrow in t.

Theorem 6. The variety generated by the class of all BCC-algebras is finitely based. The equational base is $\{(1), (2), (3), (4)\}$, where (1), (2), (3) and (4) are the axioms of BCC-algebras in this note p. 13.

Proof. We write $\mapsto s = t$ if s = t is provable from $\{(1), (2), (3), (4)\}$. It suffices

to show that, for any s and t, $\mapsto s = t$ if $s \Leftrightarrow t$. By induction on deg $(s) + \deg(t)$. If deg $(s) + \deg(t) = 0$, then s and t are the same variables. Hence $\mapsto s = t$. Suppose deg $(s) + \deg(t) \ge 1$.

Case 1: deg(s) = 0, that is, s is a variable.

Let t be $t_1 \rightarrow t_2$. By $t_1 \rightarrow t_2 \vdash s$ and Lemma 4 (because s is a variable), we have $\vdash t_1$. Therefore $s \Leftrightarrow t_2$ and $\mapsto t_1 = 1$. By induction hypothesis, we have $\mapsto s = t_2$. Hence, by $\mapsto t_1 = 1$, we have $\mapsto s = t$. (Note that $\vdash s$ iff $\mapsto s = 1$ for any s.)

Case 2: deg(t) = 0. Similarly to Case 1.

Case 3: $deg(s) \ge 1$ and $deg(t) \ge 1$.

Let s and t be $s_1 oup s_2$ and $t_1 oup t_2$, respectively. By Lemma 5, at least one of the following conditions holds; (A) $s_1 \Leftrightarrow t_1$ and $s_2 \Leftrightarrow t_2$, (B) $\vdash s_t$ and $s_2 \Leftrightarrow t_1 oup t_2$, (C) $\vdash t_1$ and $s_1 oup s_2 \Leftrightarrow t_2$ or, (D) $\vdash s_1 oup s_2$ and $\vdash t_1 oup t_2$. We prove it only in the case (A). In other cases, the proof is easy and similar. By induction hypothesis, we have that $\vdash s_1 = t_1$ and $\vdash s_2 = t_2$. Hence we have $\vdash s = t$. Q. E. D.

We can obtain an axiom system for BCK-algebras by adding the identity (6) $x \rightarrow y \rightarrow z = y \rightarrow x \rightarrow z$ to our axiom system for BCC-algebras. But $\{(1), (2), (3), (4), (6)\}$ is not an equational base of the variety generated by all BCK-algebras.

Theorem 7. The identity $x \rightarrow y = ((x \rightarrow y) \rightarrow y) \rightarrow y$ is satisfied in all BCK-algebras, but the identity is not provable from $\{(1), (2), (3), (4), (6)\}$.

Proof. We prove only that the identity is not provable from $\{(1), (2), (3), (4), (6)\}$. Consider the following Hasse diagram. We define the function \rightarrow on $\{1, a, b, c\}$ as follows:

for any
$$x$$
, $1 \rightarrow x = x$,
if $x \le y$, then $x \rightarrow y = 1$,
 $b \rightarrow c = c \rightarrow b = 1$, $a \rightarrow b = c$ and $a \rightarrow c = b$.

In this algebra, all of (1), (2), (3), (4) and (6) are satisfied. But, in the identity, we substitute a and b for x and y respectively. We have that the left side = c and the right side = b. Hence the identity is not satisfied in this algebra. Therefore the identity is not provable from $\{(1), (2), (3), (4), (6)\}$.

Problem. Is the variety generated by all BCK-algebras finitely based?

References

- [1] G. Grätzer, Universal Algebra (second edition), Springer-Verlag New York Inc., 1979.
- [2] Y. Komori, The class of BCC-algebras is not a variety, to appear.