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In [ 2], we have proved that the class of all BCC-algebras is not a variety. In this
note, developing the method in [ 2 ], we shall show that the variety gemevated by BCC-
algebras, that is, the smallest variety containing the class of all BCC-algebras, is finitely
based. (For the definitions and notations undefined here, see the reference [1])

A BCC-algebra is an algebra A = <A;—, 1> of type <2,0> such that for every
% ¥, 2 € A the following conditions are satisfied :

1) —z)—E—y)—x—z=1,
(2) x—x =1,
(3) x—1=1
(4) I1—-x =z,
(6) fx—y=1and y—x =1, then x = .

We have the axiom system of BCK-algebras (but dual form), if we exchange (1) for
(x—y)—(—z)—>x—z=1. We adopt the convention requiring terms with lacking
parenthesis to be associated to the right.

We define Gentzen-type system LC. (This system is slightly defferent from the
system in [2]. But, of course, thay are mutually equivalent.) In the following, T, A,
2 denote finite (possibly empty) sequences of terms separated by commas. The
followings are axioms and rules of inference of LC.

Axioms :

', @, A 2 « (for any variable «),
r = 1.
Rules of inference:

cut

', s =¢ . = s S,t, A u
I's—¢ ’ S,s =~ t, ', A = u
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We write T' F ¢ if the sequent I" = ¢ is provable in LC. We write I ¥t if the
sequent I' =2 ¢ is not provable in LC. If s |- ¢ and ¢ F s, then we write s < f.

Theorem 1 ([2]). For any terms s and t;
(i) + ¢t if and only if t = 1is satisfied in all BCC-algebras,
(i) st if and only if s = tis satisfied in all BCC-algebras.

Theorem 2 (Cut Elimination Theorem [2]). If T = t is provable in LC, then it is
provable without a cut in LC.

The following lemma is useful and fundamental.

Lemma 3 (Fundamental Lemma). Let T be a finite sequence of variables and a be
a variable. If T, s—t A b a and T, A ¥ a, then there exist sequences A, and A, such
thdt All's, F, t,Ag l"a andA:Al, Az.

Proof. We prove this lemma by induction on the length of cut-free LC-proof of
I, s—t, A= a. ByT,AKFa, T, s—t A=2a is not an axiom.

Case 1. The principal term of the last inference is s — £, that is, the last inference
is

A, = s ', t,A; = a
', s—t, A, Ay, @ «

(A=A A;)

In this case, this lemma obviously holds.
Case 2. The principal term of the last inference is contained in A, that is, the last
inference is

3= u T',s—t 2,,0,2; 2 «
F,S—'t,zz, u—’v,21,23=i>a

(A =3, u—v, 2, Z5)

ByT,A¥Ka, T, 2,0, S, ¥ «. By induction hypothesis, there exist sequences II, and
I, such that I; s, T, ¢ I, | @ and 2,, v, 25 = II;, Il,. Suppose that v is contained
in II,. Then, there exists a sequence A such that II, = Z,, v, A. By 2, F u and 3,
v, A bs, 3, u— v, 2, AFs. Therefore, we have that A, Fs, T,¢t A, Fa and
A=A, A, if we put Ay =35, # — v, 3;, A and A, = II,.  Suppose that v is contained
in I,. Then, there exists a sequence A such that I, = A, v, 2. By 3, Fu and T,
A v, SsFa, T,t A u—v, 3, 5 F a It completes the proof that we put A, =
I, and A, = A, u, — v, 21, 25 Q. E.D.
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We regard t,, tpe., = , t» as the empty sequence if #n <m.

Lemmad. If 4t b~ b~ a ty b1, =, b b a and b, by, =, t Fa (1<
kE<n+1and a is a variable), then - & for any [ such that 1 <[ <k — 1.

Proof. If 2 =1, then this lemma holds obviously because there does not exist /
such that 1</ <% — 1. Suppose that2 < k2 < n + 1. We prove this lemma by in-
duction on n. By Lemma 3, there exists a natural number m (¢ — 1< m < ) such
that #, te1, 5 b F &oand & — = b =@, i1, bnsay b Fa. By by b, o, b F

a, we have tui1, tpie, ***, & ¥ @. By induction hypothesis, - ¢ for any { 2 < { < m).
By t, w1, © tn F & (B =2)and b ¢, for any ¢ (2 < i < m), we have | 4. Hence, I
Lforany I <1< k—1). Q. E.D.

Lemma 5. If s— t <u—v then at least one of the following four conditions
holds ; (A) s @u and t v, (B) Fs and t =u—v, (C) F u and s —t w/a:(D) Fos—
t and F u—o. v

Proof. Let f and v be i—t——~ty—a and vy~ v,——v, = (mn =0 and «
and g8 are variables), respectively. By s—¢ | u—~v, s—t u, v, v, =, v, F 8. If 4,
v, Us, -, Ux F B, then (D) holds. Suppose #, vy, v, -, v, £ 8. By Lemma 3, either
Fsand ¢ u, v, v, ***, Uy B, or there exists [ (0 < [ < ») such that », v, v, -, v,
Fsand ¢ i, Vs ', Un b B In the former case, (B) holds. Consider the latter
case. By u—v b s—t, u—uv s 4, b, *, tn - a. We can suppose s, &, b, =, tn K
a because otherwise (D) holds. By Lemma 3, either | # and v, s, 4, &, -, tn F a, o1
there exists £ (0 < £ < m) such that s, 4, &, =, &, Fu and v, fy1, bz, =, I Fa. If
b u, then (C) holds. By & wvu1, Una, 5, Un B B, it " tn™ @ Vi1, Unz, 7,
v, F 8. Hence, by v, tu1, bers, > In F @, 0, Un1, Una, =, U, - B. Therefore, by
Lemma 4, - v; for any 7 (I <i<[). Hence, by u, v;, v, -, v, s, u }s. Simi-
larly, we have s + #. We have proved that (A) holds. Q.E.D.

The degree of a term t (denoted by deg (#)) is the number of occurrences of the
symbol — in ¢.

Theorem 6. The wvariety gemevated by the class of all BCC-algebras is finitely
based. The equational base is {(1), 2), 3), 4)} , wheve (1), (2), (3) and (4) are the
axioms of BCC-algebras in this note p. 13.

Proof. We write j»s = ¢ if s = ¢ is provable from {(1),(2), (3), (4)} . It suffices
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to show that, for any s and ¢, b>s = ¢ if s < ¢. By induction on deg (s) + deg (¢). If
deg (s) + deg (#) =0, then s and ¢ are the same variables. Hence |>s = ¢. Suppose
deg (s) + deg (¢) = 1.

Case 1: deg(s) =0, that is, s is a variable.

Let tbe 4t 4. By 4 — % F s and Lemma 4 (because s is a variable), we have

I t. Therefore s <4 andp# = 1. By induction hypothesis, we have >s = 4.
Hence, by > = 1, we have l>s = t. (Note that | s iff }>s =1 for any s.)

Case 2: deg(#) = 0. Similaly to Case 1.

Case 3: deg(s)=1 and deg(?) = 1.

Let s and ¢ be s; = s, and 4 — &, respectively. By Lemma 5, at least one of the
following conditions holds; (A) s, 4, and s; = &, (B) F s, and s, 4 — &, (C) F 4 and
s—sethbor, (D)Fs —s and - 1 —4. We prove it only in the case (A). In other
cases, the proof is easy and similar. By induction hypothesis, we have that |-s, = 4
and> s, = . Hence we have j»s = ¢. Q. E.D.

We can obtain an axiom system for BCK-algebras by adding the identity (6) x—
y—z = y—x—z to our axiom system for BCC-algebras. But {(1),(2), (3), ), (6)} is
not an equational base of the variety generated by all BCK-algebras.

Theorem 7. The identity x—y = (x—y)—y)—y is satisfied in all BCK-algebras,
but the identity is not provable from {(1), (2), (3), (4), (6)} .

Proof. We prove only that the identity is not provable from {(1), (2), (3), (4), (6)} .
Consider the following Hasse diagram. We define the function — on {1, @, b, ¢} as

follows :
1 for any x, 1—x = x,
“ if x <y, thenx—y=1,
b—c=c—>b=1 a—b=c¢ and a—~c = b.
b c

In this algebra, all of (1),(2),(3),(4) and (6) are satisfied. But, in the identity, we-

substitute ¢ and & for x and y respectively. We have that the left side = ¢ and the
right side = b. Hence the identity is not satisfied in this algebra. Therefore the
identity is not provable from {(1), (2), (3), (4), (6)} . Q.E.D.

Problem. Is the variety gewmerated by all BCK-algebras finitely based ?
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