Ap-calculus®

Yuichi Komori
komori@math.s.chiba-u.ac. jp
Department of Mathematics,
Faculty of Sciences, Chiba University

Arato Cho
aratoc@g.math.s.chiba-u.ac. jp
Department of Mathematics,
Faculty of Sciences, Chiba University

In [K02], one of the authors has posed a new system Ap-calculus and stated
without proof that the strong normalization theorem hold. We will give a proof
of it. While the type assignment system 7T A) gives a natural deduction for
intuitionistic implicational logic (cf. [HI7]), T' Ay, gives a natural deduction for

classical implicational logic. Our system is simpler than Parigot’s Au-calculus
(cf. [P92]).

1 The type free A\p-calculus

DEFINITION 1.1 (Ap-terms). An infinite sequence of A-variables is assumed to
be given, and an infinite sequence of p-variables is assumed to be given. Then
linguistic expressions called Ap-terms are defined thus:

1. each A-variable is a A\p-term, called an atom or atomic term;
2. if M and N are Ap-term then (M N) is a Ap-term called an application;

3. if M is a Ap-term and a is a p-variable then (aM) is a Ap-term called an
absurd,

4. if M is a Ap-term and f is a A-variable or a p-variable then (Af.M) is a
Ap-term called an abstract. (If f is a A-variable or a p-variable, then it
called a A-abstract or a p-abstract respectively.)

A-variables are denoted by u, v, w, z, y, z, with or without number-subscripts.
p-variables are denoted by a, b, ¢, d, with or without number-subscripts. A term-
variable means a A-variable or a p-variable. Term-variables are denoted by f, g,

*This article is an abstract and details will be published elsewhere.

h, with or without number-subscripts. Distinct letters denotes distinct variables
unless otherwise stated.

A term Aa.M is sometimes denoted by pa.M if the variable a is a p-variable.

Arbitrary Ap-terms are denoted by L, M, N, P, Q, R, S, T, with or without
number-subscripts. For Ap-term we shall say just term.

FV (M) is the set of all variables free in M. For example, F'V (Azb.a(z(by))) =

{a,y}.

DEFINITION 1.2 (Bp-contraction). A Bp-redex is any Ap-term of form (aM)N,
(Ax.M)N or (Aa.M)N; its contractum is (aM), [N/xz]M or Aa.([Az.a(xN)/a|M)N
respectively. The re-write rules are

(aM)N g, (aM),
(Az.M)N ig, [N/z]M,
(Aa.M)N >, Aa.([Az.a(xN)/a]M)N.

If P containd a Gp-redex-occurence R and @ is the result of replacing this by
its contractum, we say P [p-contracts to Q (P >18, Q).

The notion of Bp-reduction and the notation P >g, () are defined as usual.

THEOREM 1.3 (Church-Rosser threorem for fp-reduction). If M >g, P and
M >3, Q, then there exists T' such that

P >3p T and Q >3p T.
Proof. Simmlar to the case of S-reduction, see [HS86]. |

2 Assgning types to terms

DEFINITION 2.1 (Types). An infinite sequence of type-variables is assumed to
given, distinct from the term-variables. Types are linguistic expressions defined
thus:

1. each type-variable is a type called an atom;
2. if o and 7 are types then (0 — 7) is a type called a composite type.

Type-variables are denoted by p, g, r with or without number-subscripts,
and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except A and p.

Parentheses will often (but not always) be omitted from types, and the reader
should restore omitted ones in the way of association to the right.

DEFINITION 2.2 (Type-assignment). A type-assignment is any expression
M:T

where M is a A\p-term or a p-variable and 7 is a type; we call M its subject and
T is its predicate.

DEFINITION 2.3 (The system T'Ay,). T Ay, is a Natural Deduction system. Its
formulas are type-assignments. T'Ay, has no axioms and has four rules called
(— E), (= I), (Absurd) and (Rati), as follows.

Deduction rules of T'A),:

il
P:o—71 Q:0 P:r
PQ:T (= B), e P:o— T (= 1),
a:T
P PH
a:T iT iT)
PR (Absurd), P (Rati)

EXAMPLE 2.4 (Peirce’s Law).

g:a T-a (Absurd)

ax : f3

y:(la—p0)—a Max:a—g (= 1)
) (— E)
ywar)ia g
Aa.y(Az.az) : « o1

Aya.y(Az.az) : ((a — B) = a) > «

The above T Ay,-deduction is writen in more compact style:

G a T
ax : 3
yil@a—p —a a—=p"
o (— E)
a P
Ay

(@ =p)—a)—a

3 Strong Normalization Theorem for T'A),

Bp-reductions of deductions of T'A), correspond to Bp-reductions of Ap-terms.
We prove the strong normalization theorem for deductions of T'Ay, ,that is, for
every deduction of T'Ay, II, all reductions starting at II are finite. To prove the
theorem, we introduce *-expansion and use the strong normalization theorem
for deductions of T'Ay.

DEFINITION 3.1 (o-translation). For every deduction of T'A),, of which the last
rule is Rati, we define o-translation as follows:

1. TI° = 1T , where II = MH o and « is an atomic type;

y: 0 a:fB—y
2. II° = gg?)’y , where 11 = M:%lﬁv and
My.N:8—~ AaM:3—~

r:f—ny y:p
a:y TY Y
a(zy): 0
_Az.a(zy): (B—7) =6
Mz = [Az.a(zy)/alll;
Av.a(zy)/aM:f—~y y:f
[Az.a(zy)/a]My : v
Aa.[Az.a(zy)/a|My : v

DEFINITION 3.2 (x-expansion). For every deduction of T'A,,, we define x-
expansion as follows:

L. (z:a)*=z:a;

(1) (IL5)* I IT,
2. MM*=M*:a—f N*:a ,wheaell=M:a—p N:a
M*N*: 3 MN : (3
ey T:Q
H *
3. II* =]\(4*13)5 , where II =]\}Lﬂ ;
A M*:a—f AM:a—pf
(ILp)* II;
4. M=a:a M*:a ,wherell=a:a M:a ;
aM* : (3 aM : 3
a:a (a:a
* — o — H2 — 1_[2}k
5. II* = (I1;)° , where IT = Moo and II; = Mo
Aa.M : « Aa.M* : «

DEFINITION 3.3 (Ba-reduction). A Ba-reduction is a Sp-reduction which does
not allow a contruction (Aa.M)N 15, Aa.([Ax.a(xN)/a]M)N.

THEOREM 3.4 (Strong normalization theorem for Sa-reduction). For every de-
duction I1 of TAy,, all Ba-reductions starting at 11 are finite.

Proof. Similar to the case of T Ay, see [HS86]. |

THEOREM 3.5 (Strong normalization theorem for T'Ay,). For every deduction
IT of TAy,, all Bp-reductions starting at 11 are finite.

Proof. We can prove that (II1)* >1g, (II2)* if II; >1g, IIo. So we get a infi-
nite sequence of Fa-reductions from a infinite sequence of p-reductions. That
is, strong normalization theorem for Ba-reduction leads strong normalization
theorem for T'A),,. [|

References

[H97] J. Roser Hindley. Basic Simple Type Theory, Vol. 42 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1997.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators
and A-calculus, Vol. 1 of London Mathematical Society Student Texts, Cam-
bridge University Press, 1986.

[P92] Michel Parigot. Au-CALCULUS: AN ALGORITHMIC INTERPRETA-
TION OF CLASSICAL NATURAL DEDUCTION, Lecture Notes in Com-
puter Science 624, 190-201, 1992.

[K02] Yuichi Komori. Ap-Calculus: A Natural Deduction for Classical Logic,
BULLETIN OF THE SECTION OF LOGIC, VOL. 31, No. 2, 65-70, 2002.

