$\lambda \rho$ -calculus^{*}

Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University

Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University

In [K02], one of the authors has posed a new system $\lambda\rho$ -calculus and stated without proof that the strong normalization theorem hold. We will give a proof of it. While the type assignment system TA_{λ} gives a natural deduction for intuitionistic implicational logic (cf. [H97]), $TA_{\lambda\rho}$ gives a natural deduction for classical implicational logic. Our system is simpler than Parigot's $\lambda\mu$ -calculus (cf. [P92]).

1 The type free $\lambda \rho$ -calculus

DEFINITION 1.1 ($\lambda \rho$ -terms). An infinite sequence of λ -variables is assumed to be given, and an infinite sequence of ρ -variables is assumed to be given. Then linguistic expressions called $\lambda \rho$ -terms are defined thus:

- 1. each λ -variable is a $\lambda \rho$ -term, called an *atom* or *atomic term*;
- 2. if M and N are $\lambda \rho$ -term then (MN) is a $\lambda \rho$ -term called an *application*;
- 3. if M is a $\lambda \rho$ -term and a is a ρ -variable then (aM) is a $\lambda \rho$ -term called an *absurd*;
- 4. if *M* is a $\lambda \rho$ -term and *f* is a λ -variable or a ρ -variable then $(\lambda f.M)$ is a $\lambda \rho$ -term called an *abstract*. (If *f* is a λ -variable or a ρ -variable, then it called a λ -abstract or a ρ -abstract respectively.)

 λ -variables are denoted by u, v, w, x, y, z, with or without number-subscripts. ρ -variables are denoted by a, b, c, d, with or without number-subscripts. A *termvariable* means a λ -variable or a ρ -variable. Term-variables are denoted by f, g,

^{*}This article is an abstract and details will be published elsewhere.

 $\boldsymbol{h},$ with or without number-subscripts. Distinct letters denotes distinct variables unless otherwise stated.

A term $\lambda a.M$ is sometimes denoted by $\rho a.M$ if the variable a is a ρ -variable.

Arbitrary $\lambda \rho$ -terms are denoted by L, M, N, P, Q, R, S, T, with or without number-subscripts. For $\lambda \rho$ -term we shall say just term.

FV(M) is the set of all variables free in M. For example, $FV(\lambda x b.a(x(by))) = \{a, y\}.$

DEFINITION 1.2 ($\beta\rho$ -contraction). A $\beta\rho$ -redex is any $\lambda\rho$ -term of form (aM)N, $(\lambda x.M)N$ or $(\lambda a.M)N$; its contractum is (aM), [N/x]M or $\lambda a.([\lambda x.a(xN)/a]M)N$ respectively. The re-write rules are

$$\begin{array}{ll} (aM)N & \rhd_{1\beta\rho} & (aM), \\ (\lambda x.M)N & \rhd_{1\beta\rho} & [N/x]M, \\ (\lambda a.M)N & \rhd_{1\beta\rho} & \lambda a.([\lambda x.a(xN)/a]M)N. \end{array}$$

If P containd a $\beta \rho$ -redex-occurrence <u>R</u> and Q is the result of replacing this by its contractum, we say P $\beta \rho$ -contracts to Q ($P \triangleright_{1\beta\rho} Q$).

The notion of $\beta \rho$ -reduction and the notation $P \triangleright_{\beta \rho} Q$ are defined as usual.

THEOREM 1.3 (Church-Rosser threorem for $\beta\rho$ -reduction). If $M \triangleright_{\beta\rho} P$ and $M \triangleright_{\beta\rho} Q$, then there exists T such that

$$P \triangleright_{\beta \rho} T$$
 and $Q \triangleright_{\beta \rho} T$.

Proof. Similar to the case of β -reduction, see [HS86].

2 Assigning types to terms

DEFINITION 2.1 (Types). An infinite sequence of *type-variables* is assumed to given, distinct from the term-variables. *Types* are linguistic expressions defined thus:

- 1. each type-variable is a type called an *atom*;
- 2. if σ and τ are types then $(\sigma \to \tau)$ is a type called a *composite type*.

Type-variables are denoted by p, q, r with or without number-subscripts, and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except λ and ρ . Parentheses will often (but not always) be omitted from types, and the reader

should restore omitted ones in the way of association to the right.

DEFINITION 2.2 (Type-assignment). A type-assignment is any expression

 $M:\tau$

where M is a $\lambda \rho$ -term or a ρ -variable and τ is a type; we call M its *subject* and τ is its *predicate*.

DEFINITION 2.3 (The system $TA_{\lambda\rho}$). $TA_{\lambda\rho}$ is a Natural Deduction system. Its formulas are type-assignments. $TA_{\lambda\rho}$ has no axioms and has four rules called $(\rightarrow E), (\rightarrow I), (Absurd)$ and (Rati), as follows.

Deduction rules of $TA_{\lambda\rho}$:

$$\begin{array}{ll} \displaystyle \frac{P:\sigma \to \tau \quad Q:\sigma}{PQ:\tau} \ (\to E), & \displaystyle \frac{\begin{matrix} \overline{x:\sigma} \\ \Pi \\ P:\tau \\ \overline{\lambda x.P:\sigma \to \tau} \end{matrix} \ (\to I), \\ \displaystyle \frac{\overline{a:\tau} \\ \Pi \\ \Pi \\ \frac{Q:\tau}{aP:\sigma} \ (Absurd), & \displaystyle \frac{\overline{a:\tau} \\ \Pi \\ \overline{\lambda a.P:\tau} \ (Rati). \end{array} \end{array}$$

EXAMPLE 2.4 (Peirce's Law).

$$\frac{\overline{a:\alpha} \quad \overline{x:\alpha}}{\underline{ax:\beta}} (Absurd)$$

$$\frac{\overline{y:(\alpha \to \beta) \to \alpha}}{\frac{y(\lambda x.ax):\alpha}{\lambda a.y(\lambda x.ax):\alpha}} (Absurd) (\to I)$$

$$(\to E)$$

$$\frac{\overline{y(\lambda x.ax):\alpha}}{\overline{\lambda a.y(\lambda x.ax):\alpha}} (Rati)$$

$$(\to I)$$

The above $TA_{\lambda\rho}$ -deduction is written in more compact style:

$$\frac{\overline{a:\alpha} \quad \overline{x:\alpha}}{\overline{y:(\alpha \to \beta) \to \alpha}} \xrightarrow{\begin{array}{c} \overline{a:\alpha} & \overline{x:\alpha} \\ \hline ax:\beta \\ \overline{\alpha \to \beta} \\ \lambda x \\ (\to E) \end{array}} \\ \frac{\frac{\alpha}{\alpha} \rho a}{((\alpha \to \beta) \to \alpha) \to \alpha} \lambda y$$

3 Strong Normalization Theorem for $TA_{\lambda\rho}$

 $\beta\rho$ -reductions of deductions of $TA_{\lambda\rho}$ correspond to $\beta\rho$ -reductions of $\lambda\rho$ -terms. We prove the strong normalization theorem for deductions of $TA_{\lambda\rho}$, that is, for every deduction of $TA_{\lambda\rho}$ II, all reductions starting at II are finite. To prove the theorem, we introduce *-expansion and use the strong normalization theorem for deductions of TA_{λ} .

DEFINITION 3.1 (o-translation). For every deduction of $TA_{\lambda\rho}$, of which the last rule is *Rati*, we define o-*translation* as follows:

1. $\Pi^{\circ}\equiv\Pi$, where $\Pi\equiv \underset{M\,:\,\alpha}{\Pi}$ and α is an atomic type;

2.
$$\Pi^{\circ} \equiv \frac{\overline{y:\beta}}{\begin{array}{c} (\Pi_{2})^{\circ} \\ N:\gamma \\ \overline{\lambda y.N:\beta \to \gamma} \end{array}}, \text{ where } \Pi \equiv \frac{\overline{a:\beta \to \gamma}}{\begin{array}{c} \Pi_{1} \\ M:\beta \to \gamma \\ \overline{\lambda a.M:\beta \to \gamma} \end{array}} \text{ and}$$

$$\Pi_{2} \equiv \frac{\frac{\overline{a:\gamma}}{a:\gamma} \frac{\overline{x:\beta \to \gamma} y:\beta}{xy:\gamma}}{a(xy):\delta} \\ \frac{\overline{\lambda x.a(xy):(\beta \to \gamma) \to \delta}}{[\lambda x.a(xy)/a]\Pi_{1}} \\ \frac{[\lambda x.a(xy)/a]M:\beta \to \gamma y:\beta}{[\lambda x.a(xy)/a]My:\gamma} \\ \frac{\overline{\lambda x.a(xy)/a}My:\gamma}{\overline{\lambda a.[\lambda x.a(xy)/a]My:\gamma}}$$

DEFINITION 3.2 (*-expansion). For every deduction of $TA_{\lambda\rho}$, we define *expansion as follows:

1. $(x:\alpha)^* \equiv x:\alpha$; 2. $\Pi^* \equiv \frac{(\Pi_1)^* \quad (\Pi_2)^*}{M^* : \alpha \to \beta \quad N^* : \alpha}$, where $\Pi \equiv \frac{\Pi_1 \quad \Pi_2}{M : \alpha \to \beta \quad N : \alpha}$; 3. $\Pi^* \equiv \frac{\overline{X:\alpha}}{(\Pi_1)^*}$, where $\Pi \equiv \frac{\overline{X:\alpha}}{M : \beta}$; 4. $\Pi^* \equiv \frac{(\Pi_1)^*}{aM^* : \alpha}$, where $\Pi \equiv \frac{a:\alpha \quad M : \alpha}{aM : \beta}$; 5. $\Pi^* \equiv (\Pi_1)^\circ$, where $\Pi \equiv \frac{\overline{a:\alpha}}{Aa.M : \alpha}$ and $\Pi_1 \equiv \frac{\overline{a:\alpha}}{Aa.M^* : \alpha}$.

DEFINITION 3.3 (βa -reduction). A βa -reduction is a $\beta \rho$ -reduction which does not allow a contruction $(\lambda a.M)N \triangleright_{1\beta\rho} \lambda a.([\lambda x.a(xN)/a]M)N.$

THEOREM 3.4 (Strong normalization theorem for βa -reduction). For every deduction Π of $TA_{\lambda\rho}$, all βa -reductions starting at Π are finite.

Proof. Similar to the case of TA_{λ} , see [HS86].

THEOREM 3.5 (Strong normalization theorem for $TA_{\lambda\rho}$). For every deduction Π of $TA_{\lambda\rho}$, all $\beta\rho$ -reductions starting at Π are finite.

Proof. We can prove that $(\Pi_1)^* \triangleright_{1\beta a} (\Pi_2)^*$ if $\Pi_1 \triangleright_{1\beta \rho} \Pi_2$. So we get a infinite sequence of βa -reductions from a infinite sequence of $\beta \rho$ -reductions. That is, strong normalization theorem for βa -reduction leads strong normalization theorem for $TA_{\lambda\rho}$.

References

- [H97] J. Roser Hindley. Basic Simple Type Theory, Vol. 42 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1997.
- [HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators and λ -calculus, Vol. 1 of London Mathematical Society Student Texts, Cambridge University Press, 1986.
- [P92] Michel Parigot. $\lambda\mu$ -CALCULUS: AN ALGORITHMIC INTERPRETA-TION OF CLASSICAL NATURAL DEDUCTION, Lecture Notes in Computer Science 624, 190-201, 1992.
- [K02] Yuichi Komori. $\lambda \rho$ -Calculus: A Natural Deduction for Classical Logic, BULLETIN OF THE SECTION OF LOGIC, VOL. 31, No. 2, 65-70, 2002.