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Outline of this talk

• von Neumann’s game and the minimax theorem

• Blackwell game and its determinacy

• From an intuitionistic point of view?
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I
II

str.A str.B

str.1 a1A a1B

str.2 a2A a2B

• Both player choose his strategy at the same time.

• If player I uses strategy i and if player II uses
strategy X, II pays $aiX .

• I wants to get as much as possible.

• II want to make his loss as little as possible.

• Is there an equilibrium point?
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Example 1

I
II

str.A str.B

str.1 1 2
str.2 3 4

game 1

• str.1 yields $1 at least

• str.2 yields $3 at least

→ I’s value is 3

• str.A’s costs $3 at most

• str.B’s costs $4 at most

→ II’s value is 3

The optimal pair of strategies is (str.2, str.A).
The value of the game 3.



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least

→ I’s value is 2



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least

→ I’s value is 2

• str.A costs $4 at most



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least

→ I’s value is 2

• str.A costs $4 at most

• str.B costs $3 at most



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least

→ I’s value is 2

• str.A costs $4 at most

• str.B costs $3 at most

→ II’s value is 3



Example 2

I
II

str.A str.B

str.1 4 1
str.2 2 3

game 2

• str.1 yields $1 at least

• str.2 yields $2 at least

→ I’s value is 2

• str.A costs $4 at most

• str.B costs $3 at most

→ II’s value is 3

There is no optimal strategies!
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The existence of the equilibrium point

For a given game

I
II

str.A str.B

str.1 a1A a1B

str.2 a2A a2B

the optimal strategies exists iff

max
i∈{1,2}

min
X∈{A,B}

aiX = min
X∈{A,B}

max
i∈{1,2}

aiX
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Mixed strategy

Mixed strategy:

a probability distribution on the set of all strategies

I
II

str.A str.B

50 %→ str.1 a1A a1B

50 %→ str.2 a2A a2B

For pure strategy, the optimal strategies do not always
exists.

How about mixed strategy?



Minimax theorem

Theorem (von Neumann)
For any game, the pair of optimal mixed strategies
exists, i.e.,

max
σ∈MSI

min
τ∈MSII

E(σ, τ) = min
τ∈MSII

max
σ∈MSI

E(σ, τ),

where

E(σ, τ): the expected value of the game with I’s mixed
strategy σ and II’s mixed strategy τ .

MSI : the set of mixed strategies for player I

MSII : the set of mixed strategies for player II
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Blackwell games

“Infinite iteration” of von Neumann’s game

• An pay-off function f : XN ×XN → R is given

• Two players simultaneously choose elements of X
(move).

• After a move, both player can check the previous
move.

• Players iterate move infinitely and construct
(α, β) ∈ XN ×XN.
I α(0) α(1) α(2) α(3) · · ·
II β(0) β(1) β(2) β(3) · · ·

• Player II pays $f(α, β) to player I.
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Strategy and determinacy of Blackwell games

Let f be a given pay-off function.

Strategies: A function which assigns a probability
distribution on X to every 〈s, t〉 ∈ X<N ×X<N.

Eσ,τ(f): The expected value with I’s str. σ and II’s str. τ
(if f is not Borel measurable, we need modification)

Value Eσ(f) of I’s str. σ: inf{E−
σ,τ(g) : τ is II’s str.}

Value Eτ(f) of II’s str. τ : sup{E+
σ,τ(g) : σ is I’s str.}

I’s value EI(f): supσ Eσ(f)

II’s value EII(f): infσ Eτ(f)

Blackwell game f is determinate if EI(f) = EII(f).
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Axiom of determinacy and Blackwell games

Ordinary game:

• set A ⊆ XN is given

• Two players alternately choose x ∈ X and construct
α ∈ XN

I α(0) α(2) α(4) · · ·
II α(1) α(3) α(5) · · ·

• I wins iff α ∈ A

• A is determinate if one of the player has a ws.

Theorem (Martin)

Axiom of determinacy →

Determinacy of Blackwell game in 2N



From an intuitionistic point of view

We work in “Brouwerian mathematics.”
Int.Class.

Const.

• Logic is the intuitionistic logic.

• It has some mathematical axioms
which is not included
in the classical mathematics.
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Axiom of intuitionistic mathematics 1

1st & 2nd axioms of continuous choice
For any relation R ⊆ C × N (resp. C × C),
if, for any α ∈ C, there is β s.t. R(α, β),
then there is cont. f s.t., for all α ∈ C, R(α, f(α)).

∴ Every function f : C → C is continuous.
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Axiom of intuitionistic mathematics 2

In the classical mathematics,
König’s lemma (KL)

Every infinite binary tree has an infinite path.

... ... ... ... ...

In Brouwerian mathematics,
Brouwer’s fan theorem (BFT)

For any binary tree T ,
if T has no infinite path, then T is finite.

A intuitionistic counterexample of K önig’s lemma

We have a tree T with paths of any length
but we can prove neither

• T has an infinite path, nor
• T has no infinite path
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Let k99 the least n such that

π = 3.141592......

99-length
︷ ︸︸ ︷

99999.....9 .....
↑
n-th digit

Let ρ = limn→∞ an, where

an =







0 if n < k99

−1/k99 if k99 ≤ n and k99 is even
1/k99 if k99 ≤ n and k99 is odd

If ρ ≤ 0 (resp. ρ ≥ 0),
we have a proof “if n is k99, then n is even (resp. odd).”

So we do not have ρ ≤ 0 ∨ ρ ≥ 0!!
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A continuous function on [0, 1]

In classical mathematics:

Any continuous function f : [0, 1] → R has minimum
value, i.e.,

(∃x ∈ [0, 1])(∀y ∈ [0, 1])f(x) ≤ f(y)

In Brouwerian mathematics:

Any continuous function f : [0, 1] → R has infimum
value, i.e.,

(∃v ∈ R)((∀y ∈ [0, 1])v ≤ f(y))∧

((∀ε > 0)(∃x ∈ [0, 1])f(x) < v + ε)
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Remark on continuous functions on [0, 1]

In Brouwerian mathematics, there is a continuous
function without the minimum value:

Recall ρ s.t. ρ ≤ 0 ∨ ρ ≥ 0 does not hold.

The following f : [0, 1] → R does not have minimum
value:

f(x) = ρx

• If x ∈ [0, 1] attains the minimum value of f ,
x ≤ 2

3
∨ 1

3
≥ x.

• If x ≤ 2

3
, then x ≥ 0.

• If x ≥ 1

3
, then x ≤ 0.

→We do not have the maximum value of f
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Intuitionistic version of minimax theorem

In classical mathematics:

For any von Neumann’s game, the pair of optimal
mixed strategies exists, i.e.,

max
σ∈MSI

min
τ∈MSII

E(σ, τ) = min
τ∈MSII

max
σ∈MSI

E(σ, τ),

In Brouwerian mathematics:

Theorem (Ewaltz)

For any von Neumann’s game, the equilibrium point
exists in the following sense

sup
σ∈MSI

inf
τ∈MSII

E(σ, τ) = inf
τ∈MSII

sup
σ∈MSI

E(σ, τ),



Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without
the optimal pair of strategies.



Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without
the optimal pair of strategies.

Recall ρ s.t. ρ ≤ 0 ∨ ρ ≥ 0 does not hold.



Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without
the optimal pair of strategies.

Recall ρ s.t. ρ ≤ 0 ∨ ρ ≥ 0 does not hold.

The following game does not have the optimal pair of
strategies:

I
II

str.A str.B

str.1 0 ρ
str.2 −ρ 0
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Intuitionistic Blackwell determinacy

In classical mathematics:

In ZFC, every Borel Blackwell game (i.e., pay-off
function is Borel measurable) in 2N is determinate

In Brouwerian mathematics,
since every f : 2N → R is continuous,

Theorem

Every Blackwell game is determinate.
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Further problem:

• In intuitionistic mathematics,
does Blackwell determinacy prove ordinary
determinacy of some certain class of games?
(In classical mathematics, this is partially solved)



Summarize

In intuitionistic mathematics, we have

• Modified version of minimax theorem:

For any von Neumann’s game, the following
holds

sup
σ∈MSI

inf
τ∈MSII

E(σ, τ) = inf
τ∈MSII

sup
σ∈MSI

E(σ, τ),

• Full Blackwell determinacy in 2N
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