# Game theory in economics and Blackwell determinacy from an intuitionistic point of view 

Takako Nemoto

## Outline of this talk

- von Neumann's game and the minimax theorem
- Blackwell game and its determinacy
- From an intuitionistic point of view?


## von Neumann's zero sum game

|  | II | str.A |
| :---: | :---: | :---: |
| str. | str.B |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |

- Both player choose his strategy at the same time.


## von Neumann's zero sum game

|  | II | str.A |
| :---: | :---: | :---: |
| str. | str. |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |
|  | $a_{2 A}$ | $a_{2 B}$ |

- Both player choose his strategy at the same time.
- If player I uses strategy $i$ and if player II uses strategy $X$, II pays $\$ a_{i X}$.


## von Neumann's zero sum game

|  | II | str.A |
| :---: | :---: | :---: |
| str. | str. |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |
|  | $a_{2 A}$ | $a_{2 B}$ |

- Both player choose his strategy at the same time.
- If player I uses strategy $i$ and if player II uses strategy $X$, II pays $\$ a_{i X}$.
- I wants to get as much as possible.


## von Neumann's zero sum game

|  | II | str.A |
| :---: | :---: | :---: |
| str. | str. |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |
|  | $a_{2 A}$ | $a_{2 B}$ |

- Both player choose his strategy at the same time.
- If player I uses strategy $i$ and if player II uses strategy $X$, II pays $\$ a_{i X}$.
- I wants to get as much as possible.
- Il want to make his loss as little as possible.


## von Neumann's zero sum game

|  | II | str.A |
| :---: | :---: | :---: |
| str. | str.B |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |

- Both player choose his strategy at the same time.
- If player I uses strategy $i$ and if player II uses strategy $X$, II pays $\$ a_{i X}$.
- I wants to get as much as possible.
- Il want to make his loss as little as possible.
- Is there an equilibrium point?


## Example 1

- str. 1 yields \$1 at least

|  | II | str.A | str.B |
| :--- | :---: | :---: | :---: |
| str.1 | 1 | 2 |  |
| str.2 | 3 | 4 |  |
| game 1 |  |  |  |

## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 3$ at least

|  | II | str.A | str.B |
| :--- | :---: | :---: | :---: |
| str.1 | 1 | 2 |  |
| str.2 | 3 | 4 |  |
| game 1 |  |  |  |

## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields \$3 at least $\rightarrow$ l's value is 3



## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 3$ at least $\rightarrow$ l's value is 3

- str.A's costs \$3 at most


## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 3$ at least $\rightarrow$ l's value is 3

- str.A's costs $\$ 3$ at most
- str.B's costs \$4 at most


## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields \$3 at least
$\rightarrow$ l's value is 3

- str.A's costs $\$ 3$ at most
- str.B's costs \$4 at most
$\rightarrow$ II's value is 3


## Example 1

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 3$ at least
$\rightarrow$ l's value is 3

- str.A's costs $\$ 3$ at most
- str.B's costs \$4 at most
$\rightarrow$ II's value is 3
The optimal pair of strategies is (str.2, str.A).
The value of the game 3 .


## Example 2

- str. 1 yields $\$ 1$ at least



## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least

|  | II | str.A | str.B |
| :--- | :---: | :---: | :---: |
| str.1 | 4 | 1 |  |
| str.2 | 2 | 3 |  |
| game 2 |  |  |  |

## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least $\rightarrow$ l's value is 2

|  | II | str.A | str.B |
| :--- | :---: | :---: | :---: |
| str.1 | 4 | 1 |  |
| str.2 | 2 | 3 |  |

game 2

## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least
$\rightarrow$ l's value is 2

| III | str.A | str.B |
| ---: | :---: | :---: |
| str.1 | 4 | 1 |
| str.2 | 2 | 3 |

game 2

- str.A costs $\$ 4$ at most


## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least
$\rightarrow$ l's value is 2

- str.A costs \$4 at most
- str.B costs $\$ 3$ at most


## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least
$\rightarrow$ l's value is 2

- str.A costs \$4 at most
- str.B costs $\$ 3$ at most
$\rightarrow$ II's value is 3


## Example 2

- str. 1 yields $\$ 1$ at least
- str. 2 yields $\$ 2$ at least
$\rightarrow$ l's value is 2

game 2
- str.A costs \$4 at most
- str.B costs $\$ 3$ at most
$\rightarrow$ II's value is 3
There is no optimal strategies!


## The existence of the equilibrium point

For a given game

|  | II | str.A |
| ---: | :---: | :---: |
| str. | str. |  |
| str.2 | $a_{1 A}$ | $a_{1 B}$ |
|  | $a_{2 A}$ | $a_{2 B}$ |

## The existence of the equilibrium point

For a given game

|  | II | str.A | str.B |
| ---: | :---: | :---: | :---: |
| str.1 | $a_{1 A}$ | $a_{1 B}$ |  |
| str.2 | $a_{2 A}$ | $a_{2 B}$ |  |

the optimal strategies exists iff

$$
\max _{i \in\{1,2\}} \min _{X \in\{A, B\}} a_{i X}=\min _{X \in\{A, B\}} \max _{i \in\{1,2\}} a_{i X}
$$

## Mixed strategy

Mixed strategy:
a probability distribution on the set of all strategies


## Mixed strategy

Mixed strategy:
a probability distribution on the set of all strategies


For pure strategy, the optimal strategies do not always exists.

## Mixed strategy

Mixed strategy:
a probability distribution on the set of all strategies


For pure strategy, the optimal strategies do not always exists.

How about mixed strategy?

## Minimax theorem

Theorem (von Neumann)
For any game, the pair of optimal mixed strategies exists, i.e.,

$$
\max _{\sigma \in \mathrm{MS}_{I}} \min _{\tau \in \mathrm{MS}_{I I}} \mathrm{E}(\sigma, \tau)=\min _{\tau \in \mathrm{MS}_{I I}} \max _{\sigma \in \mathrm{MS}_{I}} \mathrm{E}(\sigma, \tau)
$$

where
$\mathrm{E}(\sigma, \tau)$ : the expected value of the game with l's mixed strategy $\sigma$ and II's mixed strategy $\tau$.
$\mathrm{MS}_{I}$ : the set of mixed strategies for player I
$\mathrm{MS}_{I I}$ : the set of mixed strategies for player II

## Blackwell games

"Infinite iteration" of von Neumann's game

## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.

II

## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0)$
II $\beta(0)$


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0) \quad \alpha(1)$
II $\beta(0) \quad \beta(1)$


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0) \quad \alpha(1) \quad \alpha(2)$
II $\beta(0) \quad \beta(1) \quad \beta(2)$


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0) \quad \alpha(1) \quad \alpha(2) \quad \alpha(3)$
II $\beta(0) \quad \beta(1) \quad \beta(2) \quad \beta(3)$


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0) \quad \alpha(1) \quad \alpha(2) \quad \alpha(3) \quad \cdots$
II $\beta(0) \quad \beta(1) \quad \beta(2) \quad \beta(3) \quad \cdots$


## Blackwell games

"Infinite iteration" of von Neumann's game

- An pay-off function $f: X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow \mathbb{R}$ is given
- Two players simultaneously choose elements of $X$ (move).
- After a move, both player can check the previous move.
- Players iterate move infinitely and construct $(\alpha, \beta) \in X^{\mathbb{N}} \times X^{\mathbb{N}}$.
I $\alpha(0) \quad \alpha(1) \quad \alpha(2) \quad \alpha(3) \quad \cdots$
II $\beta(0) \quad \beta(1) \quad \beta(2) \quad \beta(3) \cdots$
- Player II pays $\$ f(\alpha, \beta)$ to player I.


## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with l's str. $\sigma$ and II's str. $\tau$

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with I's str. $\sigma$ and II's str. $\tau$
(if $f$ is not Borel measurable, we need modification)
Value $E_{\sigma}(f)$ of I's str. $\sigma: \inf \left\{E_{\sigma, \tau}^{-}(g): \tau\right.$ is II's str. $\}$

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with I's str. $\sigma$ and II's str. $\tau$
(if $f$ is not Borel measurable, we need modification)
Value $E_{\sigma}(f)$ of I's str. $\sigma$ : $\inf \left\{E_{\sigma, \tau}^{-}(g): \tau\right.$ is II's str. $\}$
Value $E_{\tau}(f)$ of II's $\boldsymbol{s t r} . \tau: \sup \left\{E_{\sigma, \tau}^{+}(g): \sigma\right.$ is I's str. $\}$

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with I's str. $\sigma$ and II's str. $\tau$
(if $f$ is not Borel measurable, we need modification)
Value $E_{\sigma}(f)$ of I's str. $\sigma$ : $\inf \left\{E_{\sigma, \tau}^{-}(g): \tau\right.$ is II's str. $\}$
Value $E_{\tau}(f)$ of II's $\boldsymbol{s t r} . \tau: \sup \left\{E_{\sigma, \tau}^{+}(g): \sigma\right.$ is l's str. $\}$
I's value $E_{I}(f): \sup _{\sigma} E_{\sigma}(f)$

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with I's str. $\sigma$ and II's str. $\tau$
(if $f$ is not Borel measurable, we need modification)
Value $E_{\sigma}(f)$ of I's str. $\sigma$ : $\inf \left\{E_{\sigma, \tau}^{-}(g): \tau\right.$ is II's str. $\}$
Value $E_{\tau}(f)$ of II's str. $\tau: \sup \left\{E_{\sigma, \tau}^{+}(g): \sigma\right.$ is l's str. $\}$
I's value $E_{I}(f): \sup _{\sigma} E_{\sigma}(f)$
II's value $E_{I I}(f): \inf _{\sigma} E_{\tau}(f)$

## Strategy and determinacy of Blackwell games

Let $f$ be a given pay-off function.
Strategies: A function which assigns a probability distribution on $X$ to every $\langle s, t\rangle \in X^{<\mathbb{N}} \times X^{<\mathbb{N}}$.
$E_{\sigma, \tau}(f)$ : The expected value with I's str. $\sigma$ and II's str. $\tau$
(if $f$ is not Borel measurable, we need modification)
Value $E_{\sigma}(f)$ of I's str. $\sigma$ : $\inf \left\{E_{\sigma, \tau}^{-}(g): \tau\right.$ is II's str. $\}$
Value $E_{\tau}(f)$ of II's str. $\tau: \sup \left\{E_{\sigma, \tau}^{+}(g): \sigma\right.$ is l's str. $\}$
I's value $E_{I}(f): \sup _{\sigma} E_{\sigma}(f)$
II's value $E_{I I}(f): \inf _{\sigma} E_{\tau}(f)$
Blackwell game $f$ is determinate if $E_{I}(f)=E_{I I}(f)$.

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$


II

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$
I $\alpha(0)$
II


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha_{\mathbf{l}} \in X^{\mathbb{N}}$
II $\quad \alpha(1)$


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$
I $\alpha(0)$

$$
\alpha(1)
$$

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$
I $\alpha(0) \quad \alpha(2)$
II
$\alpha(1)$
$\alpha(3)$


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$
I $\alpha(0)$

$$
\alpha(1)^{\alpha(2)} \alpha(3)
$$

$$
\alpha(4)
$$

II

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha \in X^{\mathbb{N}}$

$$
\begin{array}{llll}
\text { II } & \alpha(0) & & \alpha(2) \\
\text { II } & \alpha(1) & \alpha(3) & \alpha(4) \\
& \alpha(5)
\end{array}
$$

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha_{\mathbf{I}} \in X^{\mathbb{N}} \quad \begin{aligned} & \text { (0) }\end{aligned}$

$$
\alpha(1)^{\alpha(2)} \alpha(3){ }^{\alpha(4)} \alpha(5)
$$

## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha_{\mathbf{I}} \in X^{\mathbb{N}} \quad \begin{aligned} & \text { (0) }\end{aligned}$ $\alpha(4)$
II $\alpha(1)$
$\alpha(3)$
$\alpha(5)$


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha_{\mathrm{I}} \in X^{\mathbb{N}}{ }^{\mathbb{N}}(0)$ $\alpha(4)$
$\alpha(1)$
$\alpha(3)$
$\alpha(5)$
- I wins iff $\alpha \in A$


## Axiom of determinacy and Blackwell games

Ordinary game:

- set $A \subseteq X^{\mathbb{N}}$ is given
- Two players alternately choose $x \in X$ and construct $\alpha_{\mathrm{l}} \in X^{\mathbb{N}} \quad \alpha(0)$
II $\quad \alpha(1)$
$\alpha(4)$
$\alpha(3)$
$\alpha(5)$
- I wins iff $\alpha \in A$
- $A$ is determinate if one of the player has a ws.

Theorem (Martin)
Axiom of determinacy $\rightarrow$
Determinacy of Blackwell game in $2^{\mathbb{N}}$

## From an intuitionistic point of view

We work in "Brouwerian mathematics."

- Logic is the intuitionistic logic.
- It has some mathematical axioms which is not included in the classical mathematics.



## Intuitionistic logics

Intuitionistic logic

- $\varphi$ means "we have a proof of $\varphi$ "
- $\exists x \varphi(x)$ means "we have a method of construct $a$ with $\varphi(a)$


## Intuitionistic logics

Intuitionistic logic

- $\varphi$ means "we have a proof of $\varphi$ "
- $\exists x \varphi(x)$ means "we have a method of construct $a$ with $\varphi(a)$

Classical logic

- $\exists x \varphi(x) \leftrightarrow \neg \forall x \neg \varphi(x)$
- $\varphi \vee \psi \leftrightarrow \neg(\neg \varphi \wedge \neg \psi)$ (de Morgan's law)


## Intuitionistic logics

Intuitionistic logic

- $\varphi$ means "we have a proof of $\varphi$ "
- $\exists x \varphi(x)$ means "we have a method of construct $a$ with $\varphi(a)$

Classical logic

- $\exists x \varphi(\rightarrow \neg \forall x \neg \varphi(x)$
- $\varphi \vee \sim \neg(\neg \varphi \wedge \neg \psi)$ (de Morgan's law)


## Axiom of intuitionistic mathematics 1

## 1st \& 2nd axioms of continuous choice

For any relation $R \subseteq \mathcal{C} \times \mathbb{N}$ (resp. $\mathcal{C} \times \mathcal{C}$ ), if, for any $\alpha \in \mathcal{C}$, there is $\beta$ s.t. $R(\alpha, \beta)$, then there is cont. $f$ s.t., for all $\alpha \in \mathcal{C}, R(\alpha, f(\alpha))$.

## Axiom of intuitionistic mathematics 1

## 1st \& 2nd axioms of continuous choice

For any relation $R \subseteq \mathcal{C} \times \mathbb{N}$ (resp. $\mathcal{C} \times \mathcal{C}$ ), if, for any $\alpha \in \mathcal{C}$, there is $\beta$ s.t. $R(\alpha, \beta)$, then there is cont. $f$ s.t., for all $\alpha \in \mathcal{C}, R(\alpha, f(\alpha))$.
$\therefore$ Every function $f: \mathcal{C} \rightarrow \mathcal{C}$ is continuous.

## Axiom of intuitionistic mathematics 2

In the classical mathematics,
König's lemma (KL)
Every infinite binary tree has an infinite path.


## Axiom of intuitionistic mathematics 2

In the classical mathematics,
König's lemma (KL)
Every infinite binary tree has an infinite path. In Brouwerian mathematics,
Brouwer's fan theorem (BFT)
For any binary tree $T$,
if $T$ has no infinite path, then $T$ is finite.


## Axiom of intuitionistic mathematics 2

In the classical mathematics,
König's lemma (KL)
Every infinite binary tree has an infinite path. In Brouwerian mathematics,

## Brouwer's fan theorem (BFT)

For any binary tree $T$,
if $T$ has no infinite path, then $T$ is finite.
A intuitionistic counterexample of König's lemma
We have a tree $T$ with paths of any length but we can prove neither

- $T$ has an infinite path, nor
- $T$ has no infinite path


## $\leq$ and $\geq$ in intuitionistic mathematics

Let $k_{99}$ the least $n$ such that

$$
\pi=3.141592 \ldots \ldots
$$

99-length

$\uparrow$
$n$-th digit

## $\leq$ and $\geq$ in intuitionistic mathematics

Let $k_{99}$ the least $n$ such that

$$
\pi=3.141592 \ldots . . . \overbrace{\substack{\uparrow 9999 . . \\ n \text { n-th digit }}}
$$

Let $\rho=\lim _{n \rightarrow \infty} a_{n}$, where

$$
a_{n}= \begin{cases}0 & \text { if } n<k_{99} \\ -1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is even } \\ 1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is odd }\end{cases}
$$

## $\leq$ and $\geq$ in intuitionistic mathematics

Let $k_{99}$ the least $n$ such that

$$
\pi=3.141592 \ldots . . \begin{array}{ll}
\overbrace{\uparrow}^{\uparrow} 9999 . . \\
& n \text {-th digit }
\end{array}
$$

Let $\rho=\lim _{n \rightarrow \infty} a_{n}$, where

$$
a_{n}= \begin{cases}0 & \text { if } n<k_{99} \\ -1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is even } \\ 1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is odd }\end{cases}
$$

If $\rho \leq 0$ (resp. $\rho \geq 0$ ),
we have a proof "if $n$ is $k_{99}$, then $n$ is even (resp. odd)."

## $\leq$ and $\geq$ in intuitionistic mathematics

Let $k_{99}$ the least $n$ such that

$$
\pi=3.141592 \ldots . . \quad \overbrace{99999} .
$$

$n$-th digit
Let $\rho=\lim _{n \rightarrow \infty} a_{n}$, where

$$
a_{n}= \begin{cases}0 & \text { if } n<k_{99} \\ -1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is even } \\ 1 / k_{99} & \text { if } k_{99} \leq n \text { and } k_{99} \text { is odd }\end{cases}
$$

If $\rho \leq 0$ (resp. $\rho \geq 0$ ),
we have a proof "if $n$ is $k_{99}$, then $n$ is even (resp. odd)."
So we do not have $\rho \leq 0 \vee \rho \geq 0$ !!

## A continuous function on $[0,1]$

In classical mathematics:
Any continuous function $f:[0,1] \rightarrow \mathbb{R}$ has minimum value, i.e.,

$$
(\exists x \in[0,1])(\forall y \in[0,1]) f(x) \leq f(y)
$$

## A continuous function on $[0,1]$

In classical mathematics:
Any continuous function $f:[0,1] \rightarrow \mathbb{R}$ has minimum value, i.e.,

$$
(\exists x \in[0,1])(\forall y \in[0,1]) f(x) \leq f(y)
$$

In Brouwerian mathematics:
Any continuous function $f:[0,1] \rightarrow \mathbb{R}$ has infimum value, i.e.,
$(\exists v \in \mathbb{R})((\forall y \in[0,1]) v \leq f(y)) \wedge$

$$
((\forall \varepsilon>0)(\exists x \in[0,1]) f(x)<v+\varepsilon)
$$

## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.

## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following $f:[0,1] \rightarrow \mathbb{R}$ does not have minimum value:

$$
f(x)=\rho x
$$

## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following $f:[0,1] \rightarrow \mathbb{R}$ does not have minimum value:

$$
f(x)=\rho x
$$

- If $x \in[0,1]$ attains the minimum value of $f$,

$$
x \leq \frac{2}{3} \vee \frac{1}{3} \geq x
$$

## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following $f:[0,1] \rightarrow \mathbb{R}$ does not have minimum value:

$$
f(x)=\rho x
$$

- If $x \in[0,1]$ attains the minimum value of $f$,

$$
x \leq \frac{2}{3} \vee \frac{1}{3} \geq x
$$

- If $x \leq \frac{2}{3}$, then $x \geq 0$.


## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following $f:[0,1] \rightarrow \mathbb{R}$ does not have minimum value:

$$
f(x)=\rho x
$$

- If $x \in[0,1]$ attains the minimum value of $f$,

$$
x \leq \frac{2}{3} \vee \frac{1}{3} \geq x
$$

- If $x \leq \frac{2}{3}$, then $x \geq 0$.
- If $x \geq \frac{1}{3}$, then $x \leq 0$.


## Remark on continuous functions on $[0,1]$

In Brouwerian mathematics, there is a continuous function without the minimum value:

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following $f:[0,1] \rightarrow \mathbb{R}$ does not have minimum value:

$$
f(x)=\rho x
$$

- If $x \in[0,1]$ attains the minimum value of $f$,

$$
x \leq \frac{2}{3} \vee \frac{1}{3} \geq x
$$

- If $x \leq \frac{2}{3}$, then $x \geq 0$.
- If $x \geq \frac{1}{3}$, then $x \leq 0$.
$\rightarrow$ We do not have the maximum value of $f$


## Intuitionistic version of minimax theorem

## In classical mathematics:

For any von Neumann's game, the pair of optimal mixed strategies exists, i.e.,

$$
\max _{\sigma \in \mathrm{MS}_{I}} \min _{\tau \in \mathrm{MS}_{I I}} \mathrm{E}(\sigma, \tau)=\min _{\tau \in \mathrm{MS}_{I I}} \max _{\sigma \in \mathrm{MS}_{I}} \mathrm{E}(\sigma, \tau),
$$

## Intuitionistic version of minimax theorem

In classical mathematics:
For any von Neumann's game, the pair of optimal mixed strategies exists, i.e.,

$$
\max _{\sigma \in \mathrm{MS}_{I}} \min _{\tau \in \mathrm{MS}_{I I}} \mathrm{E}(\sigma, \tau)=\min _{\tau \in \mathrm{MS}_{I I}} \max _{\sigma \in \mathrm{MS}_{I}} \mathrm{E}(\sigma, \tau),
$$

In Brouwerian mathematics:
Theorem (Ewaltz)
For any von Neumann's game, the equilibrium point exists in the following sense

$$
\sup _{\sigma \in \mathrm{MS}_{I}} \inf _{\tau \in \mathrm{MS}_{I I}} \mathrm{E}(\sigma, \tau)=\inf _{\tau \in \mathrm{MS}_{I I}} \sup _{\sigma \in \mathrm{MS}_{I}} \mathrm{E}(\sigma, \tau),
$$

## Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without the optimal pair of strategies.

## Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without the optimal pair of strategies.

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.

## Remark on intuitionistic minimax theorem

In Brouwerian mathematics, we have a game without the optimal pair of strategies.

Recall $\rho$ s.t. $\rho \leq 0 \vee \rho \geq 0$ does not hold.
The following game does not have the optimal pair of strategies:

|  |  | II | str.A |
| :--- | :--- | :---: | :---: |
| str.B |  |  |  |
| str.1 | 0 | $\rho$ |  |
| str.2 | $-\rho$ | 0 |  |

## Intuitionistic Blackwell determinacy

In classical mathematics:
In ZFC, every Borel Blackwell game (i.e., pay-off function is Borel measurable) in $2^{\mathbb{N}}$ is determinate

## Intuitionistic Blackwell determinacy

In classical mathematics:
In ZFC, every Borel Blackwell game (i.e., pay-off function is Borel measurable) in $2^{\mathbb{N}}$ is determinate

In Brouwerian mathematics, since every $f: 2^{\mathbb{N}} \rightarrow \mathbb{R}$ is continuous,

## Intuitionistic Blackwell determinacy

In classical mathematics:
In ZFC, every Borel Blackwell game (i.e., pay-off function is Borel measurable) in $2^{\mathbb{N}}$ is determinate

In Brouwerian mathematics, since every $f: 2^{\mathbb{N}} \rightarrow \mathbb{R}$ is continuous,

Theorem
Every Blackwell game is determinate.

## Remark on intuitionistic determinacy

Martin proved
$\Sigma_{n}^{1}$ determinacy $\rightarrow \Sigma_{n}^{1}$ Blackwell determinacy in $2^{\mathbb{N}}$

## Remark on intuitionistic determinacy

Martin proved
$\Sigma_{n}^{1}$ determinacy $\rightarrow \Sigma_{n}^{1}$ Blackwell determinacy in $2^{\mathbb{N}}$
But in intuitionistic mathematics, we do not have ordinary determinacy!!

## Remark on intuitionistic determinacy

Martin proved
$\Sigma_{n}^{1}$ determinacy $\rightarrow \Sigma_{n}^{1}$ Blackwell determinacy in $2^{\mathbb{N}}$
But in intuitionistic mathematics, we do not have ordinary determinacy!!

Further problem:

- In intuitionistic mathematics, does Blackwell determinacy prove ordinary determinacy of some certain class of games? (In classical mathematics, this is partially solved)


## Summarize

In intuitionistic mathematics, we have

- Modified version of minimax theorem:

For any von Neumann's game, the following holds

$$
\sup _{\sigma \in \mathrm{MS}_{I}} \inf _{\tau \in \mathrm{MS}_{I I}} \mathrm{E}(\sigma, \tau)=\inf _{\tau \in \mathrm{MS}_{I I}} \sup _{\sigma \in \mathrm{MS}_{I}} \mathrm{E}(\sigma, \tau)
$$

- Full Blackwell determinacy in $2^{\mathbb{N}}$

